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of ZnSe and ZnTe under uniaxial strain
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Abstract. The second and third order elastic constants of ZnSe and ZnTe, the electronic deformation
potentials, and other bulk properties under uniaxial strains are calculated. We used first-principles density-
functional theory applied to supercells with the plane wave method and energy cutoffs of 30–40 Ry. The
3d states of Zn were treated as core states but a nonlinear core correction was used for the exchange and
correlation energy. We determined the internal strain parameter and calculated the deformation density of
unstrained ZnSe with and without Zn-3d valence states. The change of the electron density in ZnSe due to
uniaxial strain in [001], [110], and [111] directions is demonstrated. We also present the density of states
and the change of the deformation density of bulk ZnTe due to biaxial strain like in a thin epilayer on
a GaAs(001) substrate. The change of the density of states is also discussed here. Finally, the Luttinger
parameters of ZnSe are calculated.

PACS. 62.20.Dc Elasticity, elastic constants – 71.20.Nr Semiconductor compounds – 73.20.Dx Electron
states in low-dimensional structures (superlattices, quantum well structures and multilayers)

1 Introduction

Large band-gap materials have attracted much attention
in the last years because of a possible application for opto-
electronic devices in the blue spectral region. Such systems
are heterostructures of thin layers, which are stressed and
strained due to the lattice-parameter mismatch. In order
to analyse the crystal properties in composite devices, it is
important to understand the elastic and electronic prop-
erties of crystals under biaxial strain [1,2].

We therefore performed first-principles calculations of
cubic ZnSe and ZnTe crystals under uniaxial strain, as well
as under biaxial strain, e.g. in a thin ZnTe epilayer on a
GaAs substrate. We also calculated GaAs under uniaxial
strain for a better comparison of our theoretical results,
because a number of experimental and theoretical data
were available for this material.

2 Theoretical method

2.1 Total energy calculations

Our calculations are based on the density-functional the-
ory using the local density approximation [3,4]. The
wave functions are expanded in plane waves with en-
ergy cutoffs in the range of 30–40 Ry. We used separa-
ble norm-conserving ab initio pseudopotentials after refer-
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ences [5–7]. For calculations with 3d-valence states for
Zn, we generated Troullier-Martins pseudopotentials [8].
In the other cases the pseudopotentials are taken from
reference [9], which are based on the pseudopotentials of
reference [6]. The pseudopotential for Te is of the general-
ized Hamann type [10]. In the cases, in which we treat the
Zn-3d states as core states, we use a nonlinear core cor-
rection [11]. The integration over the Brillouin zone was
performed on grids of Monkhorst-Pack points [12]. The
number of points was between 10 and 20, depending on
the symmetry of the Brillouin zone. We used the computer
program fhi93cp of the Fritz-Haber-Institut in Berlin [13].

2.2 Strain

We denote the location of a material point in an un-
strained solid as ξ = (ξ1, ξ2, ξ3) and its strained location
as x = (x1, x2, x3), and we describe the deformation as a
mapping

ξ −→ x(ξ), (1)

which is defined for all points ξ of the solid. Then the
deformation gradient F =

(
Fij(ξ)

)
Fij(ξ) =

∂xi(ξ)

∂ξj
(2)
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Fig. 1. Deformation density of ZnSe in 10−3 atomic units.
The Zn 3d electrons are treated as core electrons. Shown is the
(110) plane with the Zn atoms in the upper and the Se atoms
in the lower positions of the zigzag line.

describes how vectors, which are tangential to lines s of
material points, transform under the deformation:

dx
(
ξ(s)

)
ds

=
3∑
i=1

∂x(ξ)

∂ξi

∣∣∣∣∣
ξ(s)

dξi(s)

ds

= F
(
ξ(s)

)dξ(s)

ds
· (3)

The strain tensor

ε =
1

2

(
FTF − 1

)
(4)

is used as usual as a measure for the strain. We do not
linearise the strain tensor ε with respect to the shift field
x(ξ)−ξ, in contrast to what is often done for small strains.
This is necessary in order to properly describe the third
order elastic constants, for which larger strains are con-
sidered.

3 Effect of 3d electrons

Lattice parameters are usually underestimated in pseu-
dopotential calculations of II-VI semiconductors with Zn,
when the cation 3d states are treated as core states. This
effect can be explained by the anti-bonding character of
the p-d-coupling [14], which is neglected in 3d-core calcu-
lations. To demonstrate the different bonding properties
of 3d electrons treated as core states or as valence states,
we calculated the deformation density in both cases. The
deformation density is the difference between the valence
charge densities of the crystal and of the non-interacting
neutral pseudoatoms. The deformation density therefore
exhibits the change of the electron density due to chemical
bonding. We used Troullier-Martins [8] pseudopotentials
for Zn when dealing with the 3d-valence states. Figures 1
and 2 show the contour plots of the resulting deforma-
tion densities. Since the 3d states are strongly localized
at the zinc ions, we found considerable differences of the
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Fig. 2. Deformation density of ZnSe in 10−3 atomic units. The
Zn 3d electrons are treated as valence electrons. Explanations
as for Figure 1.

deformation density due to the 3d electrons in the neigh-
bourhood of the zinc ions, especially we found charge de-
pletion zones along the bonding axis, see Figure 2. The
decrease of bonding charge weakens the screening of the
charged Zn and Se ions. The result of this weaker screening
is an increase of the bond length. We therefore obtained
a higher and more correct lattice parameter of 5.619 Å
in case of the 3d valence-electron calculation compared to
the 3d-core value of 5.496 Å, which is lower by 2.2%.

4 Elastic constants

We determined the second and third order elastic con-
stants of ZnSe, ZnTe, and GaAs from total energy cal-
culations by applying various uniaxial and biaxial strains
described by the strain tensor ε. The total energy per unit
cell is thus interpreted as the strain energy density w. In
cubic symmetry w is written in the form

w =
1

2
c11

(
ε2

1 + ε2
2 + ε2

3

)
+ c12

(
ε1ε2 + ε1ε3 + ε2ε3

)
+

1

2
c44

(
ε2

4 + ε2
5 + ε2

6

)
+

1

6
c111

(
ε3

1 + ε3
2 + ε3

3

)
+

1

2
c112

(
ε2

1ε2 + ε1ε
2
2 + ε2

1ε3 + ε1ε
2
3 + ε2

2ε3 + ε2ε
2
3

)
+c123ε1ε2ε3 +

1

2
c144

(
ε1ε

2
4 + ε2ε

2
5 + ε3ε

2
6

)
+

1

2
c155

(
ε2ε

2
4 + ε3ε

2
4 + ε1ε

2
5 + ε3ε

2
5 + ε1ε

2
6 + ε2ε

2
6

)
+c456ε4ε5ε6. (5)

In case of the elastic constants c44, c144, c155 and c456, the
applied homogeneous strain is accompanied by an addi-
tional internal strain in form of a relative shift of the two
sublattices of the two ion species. The direction of the
internal strain is determined by symmetry: the uniaxial
[110] strain leads to an internal strain in [001] direction
and for the [111] strain in the [111] direction. We deter-
mine the amount of the relative shift of the two sublattices
from the minimum of the total energy.
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For simplicity the strain tensor is often linearised with
respect to the deformation gradient. This approximation,
however, is restricted to small strains and we did not use
it for a correct treatment of the large strains necessary to
describe the third order elastic constants. The results of
our calculations are listed in Tables 1 and 2 together with
experimental and theoretical data from various authors.

We conclude from Table 1 that it is necessary to take
the internal strain into account. This is also important for
the third order elastic constants, for which we obtained
c144 = −248 GPa for ZnSe without internal strain instead
of −64 GPa by taking internal strain into account. The
figures for c155 are −337 GPa instead of −131 GPa and
for c456 −290 GPa instead of −64 GPa respectively.

The calculated values of c11 and c44 for ZnSe and ZnTe
are slightly too large compared with the experiments. This
may be a consequence of the neglect of the Zn-3d valence
states. As discussed in Section 3, the use of Zn-3d core
electrons results in overestimated bonding forces, which
lead to overestimated elastic constants. This effect, how-
ever, is not seen at c12. Our third order elastic constants
of ZnSe and ZnTe differ significantly from the results of
Prasad [26], which is the only measurement known to us.

5 Internal strain parameter

We use the internal strain parameter ζ as introduced by
Kleinman [30] for zincblende-type crystals. Let u be the
internal strain vector which shifts one sublattice relative
to its unshifted position and u0 the (unphysical) inter-
nal strain vector which shifts the second sublattice in a
position so that the nearest neighbour bond lengths are
unchanged with respect to the unstrained crystal [31]. In
our case u and u0 are parallel and ζ is then given by
u = ζu0.

We examined three uniaxial strains in [001], [110], and
[111] directions. Their deformation gradients are denoted
by F 1, F 2, and F 3, and are given by

F 1 =


√

1− 2δ2 δ δ

δ
√

1− 2δ2 δ

δ δ
√

1− 2δ2


F 2 =

1 + δ δ 0

δ 1 + δ 0

0 0 1

 (6)

F 3 =

1 + δ δ δ

δ 1 + δ δ

δ δ 1 + δ

 ·
Here δ describes the amount of the uniaxial strain, with
δ > 0 in case of expansion and δ < 0 in case of compres-
sion. Our results for the internal strain parameter ζ as a
function of δ are shown in Figure 3 for GaAs and in Fig-
ure 4 for ZnSe. The decrease of ζ with increasing δ is due
to the weakening of bonding with increasing bond length.
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Fig. 3. Internal strain parameter ζ as a function of the amount
δ of the applied uniaxial strain for GaAs. Here δ < 0 means
compression and δ > 0 means expansion.
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Fig. 4. Internal strain parameter ζ as a function of the amount
δ of the applied uniaxial strain for ZnSe.

The resulting internal strain parameters ζ for δ = 0
are compared in Table 1 with published experimental and
theoretical data. Our results for GaAs agree within 3% or
7% to two newer measurements of references [21] and [22].
There are no measurements or ab initio calculations of ζ
for ZnSe or ZnTe known to us. The results of Martin [18],
who used a valence force model, are about 15–18% higher
compared to our ab initio calculations.

6 Deformation potentials

The shift and splitting of the electronic band structure
can be described in first order by deformation potentials
[32]. We calculated the deformation-potential parameters
agap, b and d from the Kohn-Sham band structure, see
reference [33]. It can be seen from Table 3 that agap is
underestimated by 10-30% compared to the experimental
data, i.e. the measured increase of the bandgap caused
by an increasing hydrostatic pressure is smaller. This is
due to the well known band-gap problem of the density-
functional theory in the local density approximation, be-
cause the conduction band edge is not occupied in our
calculation. The deformation potential parameters b and
d, however, describe the splitting of the valence-band edge
under specific tetragonal or trigonal strains. Because only
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Table 1. Second order elastic constants in GPa and internal strain parameter ζ. The superscript zero at c44 indicates that the
calculation is done without taking the internal strain into account. The experimental values of c11, c12 and c44 are extrapolated
to zero temperature. VFM denotes a valence-force model used in reference [18].

c11 c12 c44 c044 ζ

ZnSe this work 97.8 52.5 47.0 63.1 0.596

exp. [15] 94.3 57.3 41.35

exp. [16] 88.8 52.7 41.4

exp. [17] 82.8 46.2 41.2

VFM [18] 0.723

ZnTe this work 81.5 42.0 37.4 50.1 0.580

exp. [16] 73.7 42.3 32.1

VFM [18] 0.706

GaAs this work 125.6 55.06 60.56 79.4 0.514

exp. [19] 121.07 54.77 60.36

exp. [20] 122.6 57.1 60.0

exp. [21] 0.55 ± 0.02

exp. [22] 0.53

theor. [23] 0.517

theor. [24] 0.528 ± 0.002

theor. [25] 0.48

VFM [18] 0.600

Table 2. Third order elastic constants in GPa.

c111 c112 c123 c144 c155 c456

ZnSe this work −620 −359 −98 −64 −131 −64

exp. [26] −827 −136 −551 +222 −265 −278

ZnTe this work −492 −301 −87 −81 −139 −36

exp. [26] −707 −121 −412 +183 −217 −229

GaAs this work −600 −401 −94 +10 −305 −43

exp. [27] −675 −402 −4 −70 −320 −69

exp. [28] −622 −387 −57 +2 −269 −39

exp. [29] −620 −392 −62 +8 −274 −43

Table 3. Relative deformation potentials in eV.

GaAs ZnSe ZnTe

agap b d agap b d agap b d

this work −9.80 −1.97 −4.67 −6.37 −1.33 −4.12 −6.17 −1.36 −4.32

−8.1 −1.7 −4.4 −4.4 −1.0 −3.8 −1.2

exp. to to to to to to −5.5 to −4.3

−9.0 −2.1 −6.0 −5.8 −1.3 −6.1 −1.4

Refs. [34,35] −7.2 −4.54 −6.7 −5.3

Ref. [36] −2.07 −1.37
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Fig. 5. Deformation density of ZnTe in the (110) plane
strained like a thin layer on a GaAs(001) substrate. Units are
10−3 atomic units. The Zn atoms are in the upper and the Te
atoms in the lower positions of the zigzag line.

occupied states are involved here, our results for b and
d are within or near the intervals built up from various
experimental values.

7 ZnTe strained like in a layer
on a GaAs(001) substrate

We calculated the deformation density and the density of
states of bulk ZnTe strained like a pseudomorphic ZnTe
epilayer on a GaAs(001) substrate. We assumed a per-
fect interface, i.e. we considered a homogeneously strained
ZnTe crystal due to the lattice mismatch between ZnTe
and GaAs and neglected the interface reconstruction. The
atomic spacings in the ZnTe layer parallel to the inter-
face are assumed to be equal to those in the perfect GaAs
substrate, and we calculated the relaxation of the ZnTe
layer perpendicular to the interface from the minimum
of the total energy. The resulting deformation density in
the (110) plane of ZnTe is shown in Figure 5. Figure 6
shows the difference between the deformation density of
Figure 5, projected to the unstrained coordinates, and the
deformation density of the unstrained ZnTe crystal. This
difference exhibits the response of the valence electrons to
the applied strain. The most striking feature in Figure 6 is
the concentration of charge above and below the zinc ions
in the upper positions of the zigzag line. A possible expla-
nation for this is the larger overlap of the bonding charge
between two neighbouring ions. If the two ions belong to
bonding chains which are oriented in [110] direction, as
shown in Figure 6, or in the [1̄10] direction, the strain re-
duces the angle between two neighbouring bonds and the
overlap of the bonding charge increases. There is no corre-
sponding concentration of charge above and below the Te
ions, although the bonding angle decreases here too. The
biggest charge depletion zones in Figure 6 are located at
the left and right sides of the zinc ions.
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Fig. 6. Difference of the deformation densities of ZnTe strained
like in Figure 5 and of the unstrained crystal. The deformation
density of the strained crystal has been projected to the corre-
sponding unstrained coordinates. Explanations as for Figure 5.
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Fig. 7. Density of states of ZnTe strained like in a thin layer
on a GaAs(001) substrate. Shown is the density of states in
units of number of states per unit cell and per eV.

The density of states (DOS) of ZnTe, as in the
ZnTe/GaAs(001) structure, is shown in Figure 7 and can
be compared with the DOS of unstrained ZnTe in Figure 8.
The slope of the valence band edge in the strained DOS

is smaller than without strain, which is a consequence of
the splitting of the valence band. The two highest peaks
(upper edge of the lowest band and lower edge of second
lowest band) are lower in the DOS of the strained crystal.
This indicates that the band structure close to the two
band edges is not so flat for the strained crystal. In ad-
dition, the two highest peaks of the DOS of the strained
crystal are at lower energies with respect to the upper
valence band edge (zero energy) compared with the un-
strained crystal.

8 Change of the electron density
due to uniaxial strain

In order to demonstrate the response of the valence
electrons to uniaxial strain in ZnSe, we calculated the
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Fig. 8. Density of states of the perfect ZnTe crystal in units
of number of states per unit cell and per eV.

deformation densities of the strained and of the unstrained
crystal. Both densities can be compared by subtracting
one from the other, if the deformation density of the
strained crystal is projected with respect to the coordi-
nates of the unstrained crystal. There is, however, a com-
plication in case of internal strain, because the atomic po-
sitions of the two deformation densities are not the same.
We therefore did not subtract the deformation density of
the unstrained crystal, but of a crystal with an appropri-
ate pure internal strain. Such a pure internal strain is not
accompanied by an external homogeneous strain, but can
be regarded as an optical phonon at the Γ point.

We examined three volume conserving uniaxial strains
in [001], [110], and [111] directions, which correspond to
the following deformation gradients

F [001] =
1

(1 + δ)1/3

1 0 0

0 1 0

0 0 1 + δ


F [110] =

1

(1 + 2δ)1/3

1 + δ δ 0

δ 1 + δ 0

0 0 1

 (7)

F [111] =
1

(1 + 3δ)1/3

1 + δ δ δ

δ 1 + δ δ

δ δ 1 + δ

 ·
The values for δ were chosen so that the crystal is stretched
by 6% in the corresponding directions. The calculated dif-
ferences of the deformation densities of the strained and of
the unstrained crystal are shown in Figures 9–11. Figure 9
is qualitatively similar to Figure 6 because the point sym-
metry group D2d is the same for the ZnSe crystal, strained
in [001] direction, and the ZnTe crystal strained like a thin
layer on a GaAs(001) substrate. The strain in [110] direc-
tion, described by F [110] of equation (7), causes charge
depletion zones near the middle of the bonding axes, see
Figure 10. This may be due to the increase of bond length
which results in a decrease of the electronic screening of
the positively charged ions. In case of the uniaxial strain in
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Fig. 9. Difference between the deformation densities of a ZnSe
crystal strained in the [001] direction and of the unstrained
crystal. The corresponding deformation gradient F [001] is given

in equation (7). Units are 10−3 atomic units. Shown is the (110)
plane with the Zn atoms in the upper and the Se atoms in the
lower positions of the zigzag line.
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Fig. 10. Difference between the deformation densities of a
ZnSe crystal strained in the [110] direction and of the un-
strained crystal. Explanations as for Figure 9.
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Fig. 11. Difference between the deformation densities of a
ZnSe crystal strained in the [111] direction and of the un-
strained crystal. Explanations as for Figure 9.



J. Sörgel and U. Scherz: Calculation of elastic constants under uniaxial strain 51

Zn Se
-10.0

0.0

10.0

20.0

D
ef

or
m

at
io

n 
D

en
si

ty
 [

10
-3
B

oh
r-3

]

[111] bond
other bonds
unstrained

Fig. 12. Deformation density of a ZnSe crystal, strained in
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for a bond in [111] direction and the dashed curve for the other
bonds. The dot dashed curve is for an unstrained crystal. For
a better comparison, the bond lengths are resized in the figure
to the bond length of the unstrained crystal. Units are 10−3
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Table 4. Luttinger parameters for ZnSe. The experimental
values of reference [39] were taken at 4.2 K.

γ1 γ2 γ3

this work 2.786 0.676 1.025

exp. [39] 2.45(5) 0.61(12) 1.11(10)

exp. [40] 4.30 1.14 1.84

[111] direction, Figure 11 shows remarkably strong deple-
tion zones near the center of the bonds in [111] direction,
which is stretched most compared to the other bonds.

In the case of F [111] the change of the deformation
density due to uniaxial strain is plotted in Figure 12 along
the bond length for a better quantitative comparison. It
can be seen that the charge flows off the bond, which lies
in the stretching direction, whereas the other bonds gain
charge.

9 Luttinger parameters of ZnSe

We derived the Luttinger parameters for ZnSe by fitting
the ab initio band structure of the three upper valence
bands close to the Γ -point to the band structure of a sim-
ple one-level 3 × 3 − kp model. By doing this, we obtain
the three Dressselhaus parameters [37], which can be re-
lated to the Luttinger parameters [38], by assuming a weak
spin-orbit coupling [32] in ZnSe. The results are listed in
Table 4.

The low temperature values, obtained from two-
photon magneto absorption [39], agree within 8–13% with
our calculations. This indicates that the shape of the
valence-band edge is correctly described by our method.
The data of reference [40] are obtained by Rutherford back
scattering.

10 Discussion

We have presented complete sets of third order elastic con-
stants of ZnSe, ZnTe and GaAs. The comparison of the
values of GaAs with data from several experiments demon-
strates that our method is suitable to describe third order
effects correctly. For ZnSe and ZnTe there is a strong devi-
ation between our third order elastic constants and those
of Prasad [26], the only experimental values known to us.
The internal strain must be included in the calculation, in
order to obtain correct values for the elastic constants c44,
c144, c155 and c456. As far as we know, the internal strain
parameter for ZnSe and ZnTe were neither measured nor
calculated with ab inito methods so far. Our values are
15–18% below those of Martin [18], who used a simple
valence-force model.

The comparison of the deformation density of un-
strained ZnSe, with and without the Zn-3d valence states,
visualizes the influence of the Zn-3d states on the bond-
ing properties. The Zn-3d states reduce the deformation
density in a region along the Zn-Se bond axis near the Zn
ion. This effect weakens the ion screening, and therefore
weakens the bonding forces.

The comparison of the deformation density of a
strained ZnTe layer in an ideal ZnTe/GaAs(001) het-
erostructure with that of unstrained ZnTe gives us an in-
sight in the rearrangement of the valence electrons due to
the tetragonal strain in the thin layer. The main feature
here is a charge accumulation above and below the Zn
ions in the [001] direction, which is perpendicular to the
interface.

The deformation potentials, which are related to the
valence band only (parameters b and d), are well repro-
duced for all three materials, while agap is underestimated
by 10–30% due to the band-gap problem of the density-
functional theory. The shape of the valence band near the
band edge for ZnSe is correctly described by our Kohn-
Sham band structure. This can be concluded from the
agreement between our Luttinger parameters and the ex-
perimental values.

We are grateful to Prof. Dr. M. Scheffler for valuable discus-
sions and his permanent interest in this work. We thank the
Zentraleinrichtung Rechenzentrum of the Technische Univer-
sität Berlin and the Konrad-Zuse-Zentrum für Informations-
technik Berlin for their support and the provision of computing
facilities.
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